A Parametric MPC Approach to Balancing the Cost of Abstraction for Differential-Drive Mobile Robots
نویسندگان
چکیده
When designing control strategies for differentialdrive mobile robots, one standard tool is the consideration of a point at a fixed distance along a line orthogonal to the wheel axis instead of the full pose of the vehicle. This abstraction supports replacing the non-holonomic, three-state unicycle model with a much simpler two-state single-integrator model (i.e., a velocitycontrolled point). Yet this transformation comes at a performance cost, through the robot’s precision and maneuverability. This work contains derivations for expressions of these precision and maneuverability costs in terms of the transformation’s parameters. Furthermore, these costs show that only selecting the parameter once over the course of an application may cause an undue loss of precision. Model Predictive Control (MPC) represents one such method to ameliorate this condition. However, MPC typically realizes a control signal, rather than a parameter, so this work also proposes a Parametric Model Predictive Control (PMPC) method for parameter and sampling horizon optimization. Experimental results are presented that demonstrate the effects of the parameterization on the deployment of algorithms developed for the single-integrator model on actual differential-drive mobile robots.
منابع مشابه
Experimental Analysis for Measuring Errors in Wheeled Mobile Robots (RESEARCH NOTE)
This paper presents experimental analysis of wheeled mobile robots. Mathematical modelling of the mobile robot is presented. The mobile robots consist of an omni-directional and three differential drive mobile robots are tested and moved in given trajectories and the systematic errors of the robots are determined. A new method for omni-direction mobile robot was introduced in which the robot wa...
متن کاملDirect Optimal Motion Planning for Omni-directional Mobile Robots under Limitation on Velocity and Acceleration
This paper describes a low computational direct approach for optimal motion planning and obstacle avoidance of Omni-directional mobile robots within velocity and acceleration constraints on the robot motion. The main purpose of this problem is the minimization of a quadratic cost function while limitation on velocity and acceleration of robot is considered and collision with any obstacle in the...
متن کاملDynamic Modeling and Construction of a New Two-Wheeled Mobile Manipulator: Self-balancing and Climbing
Designing the self-balancing two-wheeled mobile robots and reducing undesired vibrations are of great importance. For this purpose, the majority of researches are focused on application of relatively complex control approaches without improving the robot structure. Therefore, in this paper we introduce a new two-wheeled mobile robot which, despite its relative simple structure, fulfills the req...
متن کاملVoltage Control Strategy for Direct-drive Robots Driven by Permanent Magnet Synchronous Motors
Torque control strategy is a common strategy to control robotic manipulators. However, it becomes complex duo to manipulator dynamics. In addition, position control of Permanent Magnet Synchronous Motors (PMSMs) is a complicated control. Therefore, tracking control of robots driven by PMSMs is a challenging problem. This article presents a novel tracking control of electrically driven robots wh...
متن کاملOptimal Trajectory Planning of a Mobile Robot with Spatial Manipulator For Spatial Obstacle Avoidance
Mobile robots that consist of a mobile platform with one or many manipulators mounted on it are of great interest in a number of applications. Combination of platform and manipulator causes robot operates in extended work space. The analysis of these systems includes kinematics redundancy that makes more complicated problem. However, it gives more feasibility to robotic systems because of the e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1802.07199 شماره
صفحات -
تاریخ انتشار 2018